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A New Approach for the Morphological Segmentation
of High-Resolution Satellite Imagery

Martino Pesaresi and Jon Atli BenediktssMember, IEEE

Abstract—A new segmentation method based on the morpho- proposed method can be applied with both single-scale and mul-
logical characteristic of connected components in images is pro- tiscale approaches. Therefore, the original contribution of the
posed. Theoretical definitions of morphological leveling and mor- paper is the definition of a morphological segmentation method,

phological spectrum are used in the formal definition of a mor- hich id dient tati d b lied either
phological characteristic. In multiscale segmentation, this charac- which avolds gradient computation and can be applied either to

teristic is formalized through the derivative of the morphological ~Single-scale or multiscale image processing problems.

profile. Multiscale segmentation is particularly well suited for com- The proposed method is particularly well suited for the seg-
pleximage scenes such as aerial or fine resolution satellite images mentation of complex image scenes such as aerial or fine-res-
where very thin, enveloped and/or nested regions must be retained. olution satellite images. In segmentation of such scenes, very

The proposed method performs well in the presence of both low ra- thi | d and/ ted . h o b tained
diometric contrast and relatively low spatial resolution. Those fac- In, enveloped and/or nested regions may have 1o be retained.

tors may produce a textural effect, a border effect, and ambiguity T herefore, edge-detection based on gradient computation does
in the object/background distinction. Segmentation examples for not perform well for such scenes. The proposed method also

satellite images are given. performs well in the presence of both low radiometric contrast
Index Terms—High-resolution satellite imagery, leveling, math- and relatively low spatial resolution, which may produce a tex-
ematical morphology, morphological segmentation. tural effect, a border effect, and ambiguity in object/background

distinction. All these factors are critical and lead to an instability
effect if segmentation methods based on an edge-detection ap-
proach are applied.
N THIS paper, a new segmentation method is proposed.The paper is organized as follows. In Section I, some basic
The proposed method uses the residuals of morphologieahcepts of the mathematical morphology approach to image
opening and closing transforms based on a geodesic metagalysis are reviewed. The general context that justifies the pro-
The proposed approach may be considered analogousp#®ed method is discussed in Section lIl. Section IV contains the
region growing techniques. However, in contrast to the use @ftension of the region growing approach to multiscale image
statistical local properties as in region growing approachesgmentation. Application examples of segmentation processes
the proposed method uses a pixel similarity rule based applied to satellite images are given in Section V. Finally, con-
the morphological characteristic of connected componentsdlusions are drawn in Section VI.
images. In the proposed approach the morphological residuals
between the original grey-level function and the composition|l. | MAGE PROCESSING BY AMORPHOLOGICAL APPROACH

of a granulometry and an anti-granulometry by reconstruction . : .
. . . . Mathematical morphology is the name of a collection of op-
are used to build a morphological profile function. Recent

. ) . erators based on set theory and defined on an abstract structure
theoretical advances in mathematical morphology, such as

the definitions ofleveling and themorphological spectrum Known as an infinite lattice. These operators were first system-

. _— atically examined by Matheron and Serra in the 1960s and are
form a theoretical framework for the formal definition of the . . . .
) . X ) L an extension of Minkowski's set theory [1], [2]. Morphological
morphological profile function. This function is interpreted as ) . S . ; .
oPerators include erosion, dilation, opening, closing, rank fil-

a fuzzy membership function related to a set of morphologic ! . o
. . . ers (including median filters), top hat transforms, and other de-
characteristics of the connected components in the image.. ; ) :

. : ; . o rived transforms. These operations can be defined on binary or
labeling phase is then formalized using a decision rule base

L .~greyscale images in any number of dimensions. They can also be
gro;?:fgﬁgeﬁt value of the derivative of the morphologlchﬁned with Euclidean (isotropic) or non-Euclidean (geodesic)

The proposed approach is different from standard morpholo@-emcs' . L :
. . . The main application areas for the tools of mathematical mor-
ical segmentation approaches which are based on an edge-detec; S : . _
: . : Co ology have been medical imaging, material sciences, and ma-
tion phase (watershed line extraction on a gradient image). The - ; ; .
chine vision, where morphological transformations are partic-

ularly useful for image analysis and image enhancement. In
. . , the processing of satellite remote sensing data, mathematical
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A. Morphological Transforms and theinverse top hafor bot-hat) transfornt” f(p)

1) Definitions and Notation:A complete lattice is a math- ,
ematical structure that can formalize an ordering relation, and Fo)=en ) = f(p) =enbn i) = f(p)- (6)
the two basic operations infimum\) and supremumy\(). For
a particular set, the infimum is the greatest lower bound apd pitferent Metrics
the supremum is the smallest upper bound. Now let us consider i ) i
transformations defined on a complete lattice. . Morphol_ogwal transformatlons can either use a clasf—
A transformationy) is called S|c_al Euclldean metric or a non-Euclldean geodesm_ metric
(with geodesictransforms andeconstructionmorphological
filtering). Reconstruction filters form an important class of
morphological and connected filters [4], [5]. The reconstruction
, i , i o i filters have been proven to be very useful for image processing
Following a usual notatior( is an underlying digital grid of 5 gince they do not introduce discontinuities, and therefore,
any type in the s_ubset_df" x Z". Also, NCt'(p) is the set of preserve the shapes observed in input images. In other words,
neighbors of a pixeb with respect to the grids, andy)n f(p)  the nonisotropic metric used in morphological transformations
is the morphological transformation §{p) usingV as astruc- p veconstruction makes these transformations not sensitive to

turing element (SE). Since the subgraph ofradimensional ,5ise Another effect of the nonisotropic metric is that their SE
image corresponds tora+- one-dimensional (1-D) set+ 1-D s agaptive and does not introduce much shape noise in both
SEs can be used to investigate the morphology-dimensional filtering and detection of structures.

imageT structure; However, it i_s often recommended t_mustle 1) Geodesic TransformsEquations (3) and (4) use an
mensional SEs in order to be independent from the image gi&yionic metric where the shape and size of the SE is a constant
scaling, and in order to work with faster algorithms. These Iattgdr all points p in the domain off(p), independent of the
SEs are referred to dat SEs because they are only of tWly,ctyres present in the image. Basic dilation and erosion

dimensions in the case of two-dimensional (2-D) images. Qfnsforms can also be formalized with the notion of geodesic
the contraryp+ 1-D SEs are calledolumetric, nonflatorgrey  qisiance. Given a sek (or a mash, the geodesic distance

scaleSEs [3]. between two pixelg andq is the length of the shortest path
2) Euclidean Transformsiet us assume that we have afIaFn X, which joinsp andg. Let X C Z" x Z" be a discrete

structuring element that corresponds to the neighborlS@oes  got ang le” ¢ X, Then it is possible to define an elementary
Ne(p). Then, the erosioay of the grey level function using the ;o gesic dilation (and similarly erosion) bf inside X with
structuring elemendv is defined by the infimum of the values_, g of minimal size: SE= B (defined as only one step in
of the grey level function in the neighborhood the grid G). A standard dilation of size one followed by an
intersection is defined by

1) increasingif and only if it preserves order,
2) idempotentf and only if ¢ = 1,
3) a morphological filter if it is increasing and idempotent.

enf(p) = {Af(P)lP’ € Na(p) U f(p)}- @
. o . . FY=(YeBnX (7)
Dilation 6 is similarly defined by the supremum of the neigh-
boring values and the value ¢{p) as where(Y @ B) is the binary Euclidean dilation of the skt
using SE= B.
onfp) ={Vf@)IP' € Na(p) U f(p)}. (@) Inthe greyscale case, the geodesic greyscale dilatigyof

) ] ] ] ) inside f(z) € X based on the elementary SE is the infimum of
Classically,opening+ is defined as the result of erosion fol-,o elementary dilation of (p) and the value of (z) € X
lowed by dilation using the same SE

58,/ (0) = 80y (D) A f(x). )

For computational purposes, it is interesting to note that
Similarly, closingy is defined as the result of dilation fO||0W9dgeodesiC dilation of a given size can also be obtained by

W f(p) = énenf(p). ©))

by erosion with the same SE iteratingn elementary geodesic dilations
onf(p) = enbn f(p). (@) 80)Y =80 - 80y - 1) - 601y - 61y - 61y - oY) (9)
One of the characteristics of opening and closing operators netimes

is that they erase structures that are smaller than the SE. Byaduality, similar observations can be made for the erosion
greyscale image is interpreted as a topographical relief, thgansform.

opening cuts peaks. In contrast, closing fills valleys that are2) Reconstruction:The reconstructionp™ (Y) of X from
smaller than the SE (have a thinner support). This effect c&n C X is obtained by the iterative use of an elementary
be observed by the computation of the residual between i§godesic dilation of” inside X until idempotence is achieved
filtered image and the original image in thgp hattransform [7]

L'f(p)

pX (V) = 65, () |60y =6ty (10)
If(p) = [(p) — wf®) = f) - Sxenf()  (5) }31 D] =8y
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For a greyscale image with a flat SE, the union operator in (1fiifered gradient is thresholded. In (4), closing is defined by
is equivalent to a supremum operation. Then the greyseale morphological dilation followed by erosion in (4). Therefore,
constructionp’ (J) of the imagel (also called thenash from the watershed-plus-marker approach assumes that the local
J (also called thenarke) is obtained by the iterative use of el-minima of the gradient, which are smaller (thinner) than the
ementary greyscale geodesic dilations/ainder! until idem- SE, are not relevant. The same applies to grey level edges with
potence is reached, i.e., values less than a given threshold.
All the abovementioned approaches assume that the region
7 7 7 7 of interest for detection is large and homogenous relative to the
p(d)= \/ 6(n)('] ) ‘6(n) = Ont1)- 1) spatial and spectral resolution of the sensor. Consequently, these
nl approaches are very hard to apply in segmentation of textured

The definition of greyscalelual reconstructiorby erosion is ©OF Very complex scenes. They also often lead to results that are
similar to (11). Let/ and.J be two greyscale images definedot stable.
on the same domain and such tla .J. The dual greyscale
reconstructiorp*! (.J) of the imagel from the image/ is ob-

tained by iterating the greyscale geodesic erosion abovel [Il. COMPARISON OF OPENING AND CLOSING BY
until idempotence is reached, i.e., RECONSTRUCTION
. ; ; ; The segmentation of urban scenes detected by satellite sen-
pr(J) = /\ 5(n)(J) ‘E(n) = E(nt1)- (12)  sorsis an excellent example of the inadequacy of the large-and-
nzl homogeneous region approach. In satellite remote sensing, the

spatial resolution of commercial sensors currently reaches 5
5to 2x 2 n? per pixel. For these resolutions, the heterogeneity
(different adjacent materials and spectral response) and geo-
Watershed line detection [8] is the main tool of mathematicaletrical complexity (small objects, 3-D/shadow effects) of the
morphology used for image segmentation. Watershed segmerban scenes may produce texture effects in images for struc-
tation was introduced in image analysis by Beucher and Lanwes that can be one to two pixels wide. Urban applications
tuéjoul [9] and defined mathematically by both Meyer [10] anthay also require the detection of very thin, or complex, elon-
Najman and Schmitt [11]. However, except for a few simplgated, and nested structures. At a given sensor resolution where
cases where the target object is brighter than the backgroundtare is not a clear distinction between the object and the back-
vice versa, watershed segmentation cannot be applied direqiiyppund, the standard approach to morphological segmentation
Generally, the method is applied to images that have been tramsty be inadequate. In those situations, any attempt to find some
formed by a gradient-like operator based on a measure of #ied of an edge of a structure has as an effect on the production
local slope of the grey level function. Watershed extraction geot “surfaces of edges,” where most of the pixels are connoted as
erally means the thinning of a gradient image with a homotoplborder pixels.”
transformation. It also involves the detection of basins as regiondt is well known that there are two fundamentally different
and crestlines as boundaries for these regions. For these reassiretegies for image segmentation: edge detection and region
awatershed approach generally leads to finding the structuregiowing. Even though the standard approach to morphological
an image based on an edge-detection strategy. The standarcdagmentation is dependent on edge-detection, it is possible to
proach in watershed segmentation causes severe over-segroensider a different morphological approach to the segmenta-
tation, which may be difficult to overcome. This over-segmerion problem. The idea here is to try to characterize image struc-
tation is due on the one hand to the presence of irrelevant lotales by their morphological intrinsic characteristics instead of
minima and local maxima in the image. On the other hand, itising their boundaries. In a hypothetical approach using a mor-
also due to the presence of texture effects derived by the sphelogical region-growing technique, the border of a detected
tial interaction between the size of the object in the scene astlucture can be of size zero, thus avoiding the aforementioned
the spatial resolution of the sensor. Since watershed segmestaface-of-edges problems in segmentation of complex imagery.
tion depends on gradient calculus, a common (linear) approddherefore, a structure or an “object” in the image could be a
to overcome the over-segmentation effect is to filter the inpabnnected component (region of pixels) with the same charac-
image with a low-pass filter prior to gradient extraction. By thateristics, measured by some kind of a morphological operator.
the final number of regions is decreased, but all relevant highlt is a common practice to use the opening and closing trans-
frequency (spatial) information will be lost. forms in order to isolate bright (opening) and dark (closing)
The standard nonlinear solution to the over-segmentatistiuctures in images, where bright/dark means brighter/darker
problem was introduced by Meyer and Beucher [8]. Thethan the surrounding structures in the image. In order to isolate
solution is a marker selection followed with flooding of thestructures with a thinner support than a given SE, a widely ap-
relief formed by the gradient obtained from these markers. Théed technique is to take the residuals of the opening, closing,
marker detection is the main problem with this approach. #nd original images by thieop hat(5) andinverse top hat6)
there is no external information available, the marker detectitnansforms. Consequently, the idea is to use a composition of
problem is generally solved by morphologically filteringopening and closing transforms in order to build a definition for
(usually by geodesic closing) the gradient image. Then thige morphological characteristics.

C. Watershed Segmentation
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A. Definition of Leveling The requirement of preliminarily partitioning the image into

The composition of opening and closing operations by recolf!© SetsX andY" is the main problem with the leveling ap-
struction has recently been formalized@sling Levelingwas Proach. That problem is solved in [13] with a marker-gradient

introduced in [12]-[14] starting from the combination of twd!°0ding method. However, the solution in [13] has the afore-
spatially connected operatorsionotone planingand flatten- mentioned problems relgted to t_he edge-detection _approach.
ings [15]. Applications of leveling techniques include Objectjl'herefore, some alternative solutions are presented in the next

oriented image compression, but an important feature of 1¥2CtioONs-

eling is that it can be applied to an original image producing out- o ) o

puts at different levels of simplification. Object-oriented imagB- Definition of Morphological Characteristics

compression also takes advantage of the fact that after levelingrollowing the approach proposed here, a structure or an

an image only has flat connected components. Leveling tecbbject” in an image is defined as a connected component

niques are well documented in the literature. Therefore, they afepixels sharing the same morphological characteristics. An

only introduced here briefly for clarification purposes. idea proposed here is to use the residuals obtained from the
From (3), (4), (11), and (12), it is possible to define openingriginal image and its leveling for a measure of those charac-

and closing transforms by reconstructiddpening by recon- teristics. The simpler and intuitive taxonomy of morphological

structionis obtained by using (11) for the reconstruction of theharacteristics could, for a given spatial domain, be the set

erosion under the original image. Similartlpsing by recon- 7 = {“flat,” “concave,” “convez™}. It is referred to here as

structionis obtained by using (12) for dual reconstruction ofhe local curvature of the grey level function surface, where a

the dilation above the original image. Based on (3) and (1hiven SE determines the spatial domain.

opening by reconstruction can be defined by In order to define the morphological characteristics, we pro-
pose an alternative to Meyer’s leveling algorithm. We will base
Vi f(p) = o' P(enf(p)) =Reclenf, ).  (13) this alternative on fuzzy logic, thus avoiding the problem of the

ex-ante partition of the two complementary séfsandY” in
In a similar fashion, closing by reconstruction can be definqd7). Let the residuals between any opening by reconstruction
based on (4) and (12) by (or closing by reconstruction) and their original function be in-
. terpreted as a measure of the relative brightness of the structure
xf@) = p TP Exf(p) =Rec(Sn f, f). (14)  (or relative darkness). Then, one membership functiaran be

) ) ) ) written relative to the class “convex” and another membership
Opening and closing by reconstruction can be Cons'deredfﬁﬁctionﬁ relative to the class “concave”

lower-levelingliv— (opening) and upper-levelidgy T (closing)

operations [13]. A functiomy is an upper-leveling of a function T=f— () (18)
f ifand only if for any couple of connected neighboring pixels - 19
(p, q), the following applies: w=¢"(f) - [ (19)

(15) The leveling algorithm can now be rewritten as a decision rule

livt: > G = Gg 2 fq- " §
90 > 927 94 2 J4 based on the greatest value of the membership function

Similarly, a functiong is a lower-leveling of a functiorf if and

only if for any couple of connected neighboring pixets §), V> = =) > et ()~ f
the following applies: g=Y()=Q " fip>pu=e(f)=f>F—7(f)-
liv=: gy > 9, = g9 < Jo (16) o= (20)

. . .. In this perspective, given an image with a grey level funcifon
It is possible to show [14] that all connected components in tg?ld an SE= N, the segmented imagef the characteristic can

upper-leveling function are flat whege> f, while in the lower . . .
leveling, the same occurs wheye< f. A function g is called a simply be avtessellatlon of three different labels likefivex %,

leveling of a functionf if it is both an upper and lower leveling “concavé k, and flat” & as

of f. _

| Tflw_e algorithm propol_se(_j in ngfe_r_[_lS] fofr the gpmputag?n of E:U(fy<f

eveling requires a preliminary definition of two disjoint séfs —d(=d T 21
andY’. Those two sets delimit two partitions of the image, where * () k:W(f)>f (1)
either reconstruction by opening or reconstruction by closing of k:U(f) = f.

a marker is applied. This is achieved by the use of the minimum
value in the destination lattice for the opening and the maximun@r this segmented image, pixels where the lower leveling is
value for the closing. Consequently, the leveling is defined bstrictly lower than the original imaggare labeled: , and pixels
. where the upper leveling is strictly greater thaare labeled as
VX % . Pixels labeled have maintained the same valuefdh both
g=q ¢ 1Y (A7) the upper and lower leveling. Therefore, those pixels have been
f: XuY. indifferent to the erosion/dilation-reconstruction process with a
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Fig. 1. Simulation of the proposed segmentation method over a strip of 31 pixels. (a) Dilafion)dfy a structuring element of five pixels. (b) Erosionffr)
by the same SE as in (a). (c) Upper-leveling’()fc’) as dual reconstruction of the dilation aboffer). (d) Lower-leveling off («) by reconstruction of the erosion

underf(z). (e) Segmentation based on (21) with= 1, k = — 1,k = 0. (f) Segmentation based on (22) with= 2.

given SE of sizeV, whereN can be considered as the spatiabriginal grey level function. Fig. 1(c) and (d) show the dual re-
domain of the characteristic functidn (). construction of the dilation and the reconstruction of the erosion

1) Softer Object/Background Distinctiorin case of uncer- as upper-leveling [Fig. 1(c)] and lower-leveling [Fig. 1(d)] of the
tainty or ambiguity in distinguishing between scene foregrouratiginal function. Fig. 1(e) and (f) represent the segmentation of
and background, it is also possible to soften the conditionsntxborigﬁinal function withr = 0[Fig. 1(e)] andr = 2 [Fig. 1(f)],

the morphological characteristics by rewriting (21) as wherek =1, k = —1, % = 0. Note that pixels with indices
— from 11 to 14 are strictly flat at the given size of SE (five pixels).
kif —9(f) >0 Also, note the increase of the size of the flat areas with the in-
s=0%(f) =1 %. S = f>0 (22) creasing value of. Pixels with indices from four to ten show
_ a low contrast for this SE size. They are assigned a “flat” label
kif—9(f)<o; (f)—f<o if the value ofs is augmented. Because of the nonlinear nature

for a given level of contrast (o > 0). With ¢ = 0, (21) and Of this approach, structures that have a greater contrasithan

(22) are equivalent. On the other hand, by increasing the valudiegintain exactly the same behavior in the segmentation (pixels
o, the level of necessary contrast is increased in order to av¥{§ih indices from 18 to 31). This mechanism can be useful if
the labeling of the pixels with the “flat” label. Thus, the levelVe Want, for a given spatial domain, to distinguish the response
o could be interpreted as a threshold used in distinguishing ts8i€ to the presence of structures in an image from the signal
tween the foreground and background of the image. produced by noise.

C. Example V. MULTISCALE EXTENSION

In Fig. 1, the application of the proposed method is shown for As described previously, segmentation using residuals ob-
a strip of 31 pixels having associated signal values in the discréa@ed from the original grey level function and a composition
range [1, --, 10]. Fig. 1(a) and (b) shows the selection phas# operations of opening and closing by reconstruction requires
for the dilation [Fig. 1(a)] and erosion [Fig. 1(b)] markers of th¢he definition of the spatial domain where the method is applied
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in terms of a SE size. Some structures may have a high respoBgeduality, the derivative of the closing profilayp(x) is the

for a given SE size and a lower response for other SE sizes. Thattor

depends on the interaction between the SE size and the size, of

the structure. Sometimes we know ex-ante the size of the strl;ac?(x) = 180x Aox = [loa=Tlora], VAEL, -, nz]é

tures that is to be detected. However, that is often not possiqle eneral, the derivative of the morphological proﬁkéx)( 03

and then a single-SE-size approach appears to be too simpli KQDMP c,an be written as the vector '

Therefore, it may be a good idea to use a range of different

sizes in order to explore a range of different hypothetical spa- A 2) = { Acpr: Ava, VAEL -+, 0] } @27)

tial domains. Consequently, the best response of the structures Asxgi: Apy, VAETL -+, 1]

in the image will be used for segmentation. Given our proposgg} 5n arbitrary integer. with » equal to the total number of

segmentation method, it is straightforward to extend the sam& ations.

concept to multiscale processing. _ ~ Given all of the above, the morphological multiscale charac-
Theoretically, the intuitive idea of multiscale morphologicaleyistic® of the imagel at the point: can be defined as the SE

characteristics can be interpreted as a variation of the notion®fe \ith the greatest associated value in the followintync-
a morphological spectrum. It can be defined as an extensiongf,-

theopening spectruratudied by Haraliclet al.[16] or thepat-
tern spectrundefined in Maragos [17]. Both are based on th&(z) = {e: A(z) = VA(z), Ve € [c—n+1, -+, c+n]}.
definition of some kind of granulometry [18] for the opening (28)
spectrum. This means that an image sequence is created by tffeduation (28) can be rewritten in order to maintain informa-
computation of the differences between successive imagedifi about the type of structure that is to be detected. In order
a granulometry generated by a flat SE family with an integré® do that, themultiscale-opening characteristié(x) of the
index set. Applications of variations of the morphological speémage! at the pointz can be defined by
trum have been proposed for image noise reduction [19] and Dy(z) = {A: Aya(z) = VAY(2)}. (29)
pseudo band-pass image decomposition [20].

The definition of leveling is stricter than that of the morphoSimilarly, themultiscale-closing characteristican be defined
logical spectrum. The reason is that leveling requires openily
and closing operations made by reconstruction. In contrast, the
morphological spectrum can also be extracted by composition Dp(z) = {A: Apa(z) = VAp(a)}. (30)

of Euclidean opening and closing operations. Given the afore- L ) ) )
ith these definitions, an algorithm for multiscale segmentation

mentioned theoretical similarities, the idea of the multiscale se%— he i based on its ch o b : b
mentation based on the derivative of the morphological profity € Imagel, based on its characteristic, can be written by a
generalization of (21) and (22) as

(DMP) is developed in the following section.
ka=20y(x): VAY(x) > VAp(x)
o _ ka=0p(e): V Ay(z) < vag(e) G
Let the vectodly(x) be theopening profileat the pointz of k= 0:VAvy(z) = VAg(z).

the imagel defined by

A. Definition O(r) =

In (31), the label of the morphological characteristic is the
iteration code of the opening or closing series that correspond
to the greatest value of the derivative. If this greatest derivative
value is strictly equal for both the opening and the closing series,
the “flat” label % is applied. In this sense, an image structure is a
set of connected pixels or a connected component with the same
value of®. The function® takes the following values.

Iy(z) = {IIya: yy = A (x), VA0, ---,n]}  (23)

and let the vectoFly(x) be theclosing profileat the point: of
the imagel defined by

() = {lpxr: Loy = e (x), VAEO, ---, n]}.  (24)

1) Inthe rangeb(z) € [El, e En] in case of prevalently
Hereyg(x) = ¢i(z) = I1(z) = Io(z) = Hwo(z) = I(z) ‘convex”regions. . _
for A = 0 by the definition of opening and closing by recon- 2) In the rangeb(z) € [k, ---, k,] in case of prevalently

struction. Given (23) and (24), the opening profile can also be  “concave” regions.

defined as a granulometry made with opening by reconstruction,3) ¢(x) = k = 0 in case of prevalently “flat” or morpho-
while the closing profile can be defined as an antigranulometry  |ogically “indifferent” regions for all the used sizes of
made with closing by dual reconstruction. The derivative ofthe  SE ¢ [1, ---, n].

morphological profile is defined as a vector where the measurerinally, in a similar fashion to what was done when (22) was
of the slope of the opening-closing profile is stored for everyerived, (31) can be extended for the case of a contrast threshold

step of an increasing SE series. o for a structure
The derivative of the opening profila~(x) is defined as the —
vector k= ®v(x): VAY(z) > VAp(z) > 0
N () =9 &y = dp(z): VAY(z) < VAp(z) > o 32
Avy(z) = {Avya: Ayy = [yp —Myaq|, YAE[L, -+, 0]} »=Pp(z): VAY(x o(z) > o

(25) k=0: VAvy(x) = VAp(z) < 0.
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Fig. 2. Derivative of the morphological profile relative to different points in a densely built-up area. (a) Original piece of IRS-1C satelligthcenxe5 m of
spatial resolution. (b) Commercial building. (c) Small street (d) Residential building. (e) Small green area.

Opening

Ay(x)

Closing

Ap(x)

Fig. 3. Morphological decomposition of the image in Fig. 2 by using the derivative of the opening and closing profiles. The images have beenhasgaltly en
The derivative has been calculated relative to a series generated by six iterations of the elementary=SE fsiz@ixels).

B. Example iterations ofthe elementary eight-connected SE [using (9)], which
producesaSEsizerangefrom 3 upto 13x 13 pixels.
Thegeneralideaunderlyingthe proposedsegmentationmetho#ig. 2 shows the derivative curve for four representative ob-
is that the derivative curvA(z) is some type of a structural orjects: a commercial building, a street inside urban texture, a
morphological signature that can be used forthe pixel discrimingesidential building, and a green area. The histograms on the
tion by morphological criteria. The structural or morphologicaight show the level of the derivative relative to the opening and
signature is analogous to the spectral signature approach ofc¢losing series for every step of the iteration. Note how the be-
multispectral satellite images. Figs. 2 and 3 show the multiscélavior of the derivative curvé\(x) stores information about
derivative of the morphological profile for a small sample oboth the type and the size of the connected components inside
satellite image from a densely built-up area (sensor: IRS-1e image. Connected components that are brighter than their
panchromatic, 5 5 m? of spatial resolution). In this example, aadjacent components havé\dr) function that is unbalanced to
range of sizesof SEswasused. Thisrange wasderived based othgxight (opening series), while darker connected components
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Gaay Volwes

Fig. 4. (Top) Portion of an IRS-1C panchromatic scene over a densely built-up area from Milan, ltaly (1998, ANTRIX, SIE, Euromap). (Bottom) Tamhistog
of the IRS-1C image. The image covers an area gf4km? with a resolution of 5< 5 m (800x 800 pixels). The image has been enhanced for visualization by
min—max histogram stretching.

show aA(z) function that is unbalanced to the left (closing se- V. APPLICATIONS
ries). The point where\(x) takes the maximum value is used . .
to record the size of SE, which gives maximum response. Cdor’l'- Previous Experiments

sequently, this point gives a good indication of the size of the The idea to use a composition of opening transforms for
structure in the given spatial domain range, which can be usednorphological segmentation of satellite data was proposed
in the definition of the propose@(x). That is in contrast to some time ago for the detection of different urban structures
the decomposition of electromagnetic signals by spectral slicf&l], [22]. In the experiments in [21], [22], segmentation labels

which is common for multispectral images. It can be noted imere obtained after the arithmetic summing of an opening
Fig. 3 how the proposed multiscale derivative approach decoseries with an increasing SE. The method is only applicable
poses the image by the morphological criteria. to Boolean maps (binary or 2 grey-level images), and it does
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Fig. 5. Segmentation of the image in Fig. 4 by single-scale Iel(ellng (21). Tli‘—?g. 6. Portion of IRS-1C panchromatic scene over an agricultural and
utilized SE is an octagon of diametér= 35 m (seven pixels) wittk = white,  scattered settlement area NE of Athens, Greece, 1998 (ANTRIX, SIE,
k = black, andk = medium grey. Euromap). The image covers an area of 4t km? with a resolution of 5x 5
m meters (800x 800 pixels). The image has been enhanced for visualization
by min—max histogram stretching.

not use geodesic metric. More recently, Pesaresi and Kanel-

Ic;po_ulos [23] _used ?dq?rmposm_on O.f gec()jdesm t‘)""_fd”'”g a'a?ld streets, can have a thickness of 1 to 2 pixels in images with
closing operations of different sizes in order to build a moty comparable resolution to the resolution of this image. Most
phological profile. Then, they used a neural network approagy e pixels in such images are placed between the borders

for the classification of structures. The difference betwe : . :
different ground objects. Therefore, the dynamic range
their method and the method proposed here is that in [23], t £ g ) y g

. A n be critical if it is needed to apply standard morphological
absolute residual between the original image and the opene Qémentation based on contour detection

closed one was used as a morphological characteristic functlonFig_ 5 shows the results of the application of the proposed

Therefore,.the '.””eth."d. n [23] cannot be “369' for mu!t'sca\lﬁethod for segmentation. In this experiment, the single-scale

segmgntatmn since it limits the explored spatial d(_)mam bya roach in (21) was used. Consequently, the reconstruction of

restraint range of SEs. The method proposed here is both _gerosion under the original image and the dual reconstruction
t

ger:jeral and mo(rjebrobhus:c tnan.a” the Imethods abovle. That Wf'the dilation above the original image were composed using
e demonstrated by the following application examples. only one SE size. Both erosion and dilation were done with a

SE equal to an octagon of diametkee= 7 pixels (35 m on the
B. Application Examples ground), which is close in dimension to the most relevant ob-

Examples of the application of the proposed method are né%ts in the scene (buildings, roads). White, black, and fled'“m
given for the segmentation of two satellite high-resolution dag4€y Pixels were labeled by the segmentation procedure,as
sets. The satellite imagery is taken from a densely built-up aréaandk, respectively. By looking at Fig. 5, it can be noted that
(Milan, ltaly) and from an agricultural area connoted by scathe segmentation method appears to correctly detect most of the
tered settlement (NE of Athens, Greece). Both data sets weetevant regions. In the figure, the urban structure is well high-
recorded by the IRS-1C panchromatic sensor, which has grodigthited even though it is very complex. It is also interesting that
spatial resolution of 5 5 m?. The images used in the experibuildings generally appear labeled as radiometric “convex” cur-
ments are a sub-sample of 880800 pixels (4 kmx 4 km) of vature, while roads appear to be labeled as radiometric “con-
surface from an original scene of about 15 8005 000 pixels cave” curvature. This can be useful for a successive automatic
(75 km x 75 km). classification phase. Finally, note that most of the commercial

1) Example 1:Fig. 4 shows the subsampled image fronbuildings on the bottom right of the image have been labeled as
Milan. Itis easy to note the relatively poor dynamic range of theadiometric “flat.” That occurred because the dimension of the
data recorded by the sensor. As a consequence, the frequaritized SE is smaller than the size of the object.
histogram is concentrated around grey level 50. Relevant2) Example 2:Fig. 6 shows the subsampled image from a
objects in urban remote sensing applications, such as buildirsgsittered settlement on the N-E of Athens, Greece. It is easy
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to note the co-presence in the scene of objects/regions of ( "' B
ferent sizes. As a consequence, the multi-scale approach £ o

fined in (31) was applied. Fig. 7 shows the segmentation resu 5"1 Yy
The spatial domain explored in this experiment was given by # d |
range of 10 increasing octagonally-shaped SE’s with a diai’ =¥

eter ranging from 7 pixels (45 meters) up to 61 pixels (305 m b
ters). The step from iteratiok to iteration\ + 1 was equal to = .

6 pixels (30 m.). Consequently, the final number of labels wi
n =104+ 10+ 1 = 21, including the “flat” label. In Fig. 7, the
function ®( f) took values as follows:

1) Intherangeb(z) € [Zl, N ;10] in case of prevalently
“convex” regions.

2) Intheranged(x) € [k1, ---, k1o]in case of prevalently
“concave” regions.

3) ®(z) = k = 0in case of prevalently “flat” or morpholog- #
ically “indifferent” regions for all the used sizes of 8H,
.-+ 10].

In the segmented image, both large regions and small or
were retained without an undesired loss of detail. Simili || &%
findings were observed for nested, thin, and complex regior = g 1
It is interesting to note that the proposed multiscale approa NN
seemed to have a hierarchical effect. Large regions appeal i.i,..i :
have the same label. Also, no over-segmentation effect was
detected due to the presence of nonrelevant local minima dri@l 7. Multiscale segmentation of the image in Fig. 6 obtained by (31). The

. s . . . lored spatial domain ranges from an octagon of seven pixels (45 m) to an
local maxima, which is usual in classical segmentation by tlﬁéfagon of 61 pixets (305 m). with fen Steps of Si pixels (30 m) 6Ach,
watershed approach.

Fig. 8 shows a comparison between the proposed approach
and classical watershed segmentation for a ¥0Q00 pixel
area of the Athens data set. The subsample is placed in
the center of Athens and is taken over a compact urban
area with an internal vegetated area (park). Subimage 1
shows the original radiometric data enhanced with min-max
histogram stretching for visualization purposes. The classical
morphological approach requires the detection of the border
of the regions, and subimage 2 is the direct application of a
morphological gradient transform (defined as the difference
between dilation and erosion) to the original data. In this

complex context, it is possible to observe that attempti ) . .

; . . 8. Comparison of the proposed morphological segmentation approach
to start from edges of regions leads to the production gfq classical watershed segmentation. The subimages are ordered as shown in
“surfaces of edges,” where most of the pixels are cothe middle of the bottom row. 1) Original radiometric information (IRS-1C

« : » ; supanchromatic sensor) after linear histogram stretching, 2) gradient of the
noted as “border plxels. Another  evident prOblem Wlt@rig'nal data, 3) gradient of the filtered data, 4) image obtained by watershed

the classical approach is the over-segmentation gener entation, and 5) image obtained by multiscale segmentation as defined in
by nonrelevant local minima of the gradient function(31).

Subimage 3 shows the gradient of the filtered data where

a morphological filter was applied, defined as the openiqg labeled as only one region by the proposed method but a

of the closed image .With. a f!at SE 'equal 1033 pixels. %et of nonhomogenous regions by the classical approach.
Consequently, the situation in subimage 3 appears to be

simpler than in subimage 2. Subimage 4 shows the results
of watershed segmentation using the gradient image in
subimage 3. Subimage 5 shows the output of the multiscaleMorphological segmentation by the derivative of the morpho-

morphological segmentation defined in (31). We can notegical profile was proposed. The proposed method is based on
that the proposed approach retains a better description of the use of residuals from opening and closing by reconstruc-

original structural information, introducing less shape noig®®n. In experiments, the proposed method demonstrated excel-
than the classical watershed segmentation approach. Anotleet performance even where the classical morphological ap-

positive characteristic of the proposed method is the intringitoach had problems. In particular, the proposed approach gives
hierarchy that reduces dramatically the over-segmentatiametter shape description than the classical approach. It also re-
effect. This can be detected in the case of the green area ta#is small but significant regions in images, and has an effect of

VI. CONCLUSIONS
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intrinsic hierarchy that reduces dramatically the over-segmentat1]
tion problem of the classical approach.

The drawback of the proposed method concerns the necessity
of looking at a range of increasing opening and closing by recori2]
struction operations, which may cause a heavy computational
burden. As a consequence, forimages with very large and homer)
geneous regions, itis possible that a gradient-plus-watershed ap-
proach may be more efficient, since it does not need to explore a
very wide range of different SE sizes. For the above reasons, they
method presented here is particularly suited for segmentation of
complex image scenes such as aerial or satellite images where
very thin, enveloped, and/or nested regions must be retained. s
is also well suited for images with low radiometric contrast and
relatively low spatial resolution, which produce textural effects [1€]
border effects, and ambiguity in the object/background distinc-
tion. All these factors are critical and can lead to instability ef-[17]
fects if segmentation methods based on the edge-detection "’}E’é]
proach are used.

Currently, our work is focused on the extension of the pro-
posed approach by improving the morphological characteristi&°]
detection. The proposed formula for the morphological charac-
teristic assumes a “simple” behavior of the morphological pro{20]
file where each structure is supposed to have only one significanztl]
derivative maximum. In more complex environments, it is pos-
sible that some structures may have more than one significafa2]
derivative maximum. These complex environments can have a
greater explored spatial domain range, occurrence of nested re-
gions at different grey levels, and/or presence of spatial periodz3]
icity. Inthese cases, itis possible to make the characteristic func-
tion & more sophisticated by using any distribution-free classi-
fication procedures such as neural network classifiers.
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