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Abstract:  
This PhD proposal is a joint project of two centers of MINES Paris-PSL – the Center for Mathematical 
Morphology and the Center for Material Sciences. This project is motivated by the need to advance the 
knowledge and understanding of complex mechanical response of composite materials with the objective 
to optimize material properties and enhance durability. 

This PhD assignment addresses the design of new materials, the properties of which are determined by 
their microstructure. It this scope: 

1. We develop a new methodology to optimize various kinds of properties. In this project we will 
illustrate the methodology on the optimization of the resilience to mechanical failure.  

2. This methodology will leverage a hybrid AI architecture obtained by hybridization of a deep model 
and a numerical one. The deep AI part will formulate hypothesis in a virtual, meta-material space whereas 
the numerical model will constrain the AI to plausible material predictions. 

3. The key feature that we propose to explore is the ability of the AI to extrapolate outside the domain 
it has been trained to. The ability to extrapolate is paramount to formulate hypothesis to discover new 
meta-material parameters values.  
These challenges cannot be answered using classical numerical tools. The alliance of AI and material 
science therefore opens hope to advance knowledge. It also has an economic and ecological impact on 
industry to ensure liability and durability of uncountable industrial products.  

This project has been triggered by the availability of large datasets (micro-XCT1 data – in the Centre for 
Material Sciences) that allow the application of AI models to test new methods on real materials. In that 
way, the generated microstructures will conform to real materials and not only to theoretical solutions. 
Preliminary results to these attempts showed how to locally optimize the local distribution of the 
orientation of fibers in fiber-reinforced composites. 

Methods:  
This PhD will develop a hybrid, generative AI model to generate new, virtual 3D microstructures in a meta-
material space. The samples will be predicted to respond to desired properties formulated by the user. We 
will develop the method on virtual data and prove the concept on real composites from micro-XCT 
datasets in CMAT. The hybridized AI will consist of the following:  

1) The generative AI model will stem upon classical generative models such as GAN or VAE. A few 
recent models, proven to generate high-resolution images and structures, appear as possible candidates, 
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such as the inference-infoGAN [1], or the VQ-VAE-2 [2] that are the current SOtA method for high-quality 
generative model. The VQ-VAE-2 offers a two-stage latent space, with a compressed representation, 
where the material samples appear as entries in a codebook, allowing for high-fidelity image generation 
with an efficient sampling from interpretable latent space.  

2) The explainability of the model is a key feature besides its ability to generate high-quality 3D 
microstructures. In this effort, the model will be provided with a factorization2 mechanism on its latent 
space, as introduced for info-GAN [3] based on the maximization of the mutual information between the 
latent and the output, or more recently in beta-VAE [4], offering a more stable, and easier training. In 
addition, we plan to use orthogonalization, to improve yet further the disentanglement, interpretability and 
regularity, as shown in [5], [6]. A good estimate of the latent space dimension is essential to isolate 
independent hidden variables as in [7], leveraging the Levina and Binkel [8] estimation of the intrinsic 
statistical dimension. We will identify influential variables related to the microstructure’s geometry. 
Applied to composite microstructure, these variables will represent physical variables, related to the 
geometry, such as the distribution of the length, orientation [9], [10], local density, or related to the material 
properties such as the shear and bulk modulus of the matrix and the ratio of the reinforcement and the 
matrix modulus.  

3) A numerical model will be hybridized with generative AI model. We will start with an elasto-plastic 
formulation modeling the multiaxial stress distribution in the composite. A multiaxial stress state is 
commonly linked with the material region where failure is observed – the Gurson-Tvergaard-Needleman 
(GTN) model [11] will be used to model damage for predicting ductile fracture of the composite. GTN 
describes the nucleation, growth, and coalescence of micro-voids, which are critical stages in the ductile 
mechanism failure. The numerical damage model will be used to simulate damage into the microstructure. 
Different microstructures will respond differently to the damage model.  

4) The hybridized AI model will generate new material samples. On each sample the AI model will 
predict the occurrence of damage. In this way a dense meta-material space can be generated. By sampling 
from the latent space new candidate microstructures can be generated by the generator along with their 
properties. A similar approach was also used in [12] where the optimality was reached by Bayesian 
optimization (see [13] for a SOtA review). Whereas the Bayesian optimization allows to optimize complex 
functions that are expensive to evaluate, particularly in scenarios where the function's behavior is not 
explicitly known, the optimization is costly, and number of iterations can be high. In this project we solve 
this issue through better explainability of our model as detailed in the Expected Results below:  

Expected results:  
The principal advantages of the methodology we propose reside in:   

1) Using a disentangled and orthogonalized latent space for the generator allows an interpretable 
material search. The disentangled, orthogonalized representation in the lowest-possible-dimension latent 
space will allow for interpretability, and through better regularization also data frugality and faster 
convergence to optimal material. 

2) We showcase the new methodology on optimization of composites’ resilience. More generally 
however, this work belongs to the vast domain of material design. In this broader scope, we hope to 
develop a polyvalent method of material design that responds to more general properties of various kinds. 
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Expected candidate’s profile:  
A successful candidate will have accomplished a master level engineering studies in the domain of AI 
possibly related to engineering. Coding proficiency with python and related AI tools (tensorflow, torch) 
are essential. Excellent communication skills (oral and writing). English proficiency – Cambridge C2 
required. 
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