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1. General Context 
One of the targeted objectives of personalized medicine, with examples in conventional 
chemotherapy, or when fighting inflammatory diseases, controlled drug delivery to the lesion gives 
hopes to limit severe side effects of the therapy. In this purpose, nanotheranostic strategy [1,2,3], 
developing chemical multifunctional therapeutic systems equipped with imaging abilities associated 
with drugs allows to visualize drugs biodistribution, map drug delivery and monitor the therapeutic 
responses in vivo. Magnetic Resonance Imaging (MRI) and optical imaging are adapted to provide 
microscopic and macroscopic information with a dynamic dimension in time to follow the physio 
pathological stages in vivo. 
 
Among the medical imaging methods, MRI is a powerful imaging method used in clinics, with 3D and 
contrast advantages at the macroscopic in vivo scale. Optical imaging is a complementary modality 
which allows mapping the biodistribution of fluorescent probes at the microscopic, cellular level as 
well as at the macroscopic whole body scale. The kinetic biodistribution in time of the imaging probes 
provided by this theranostic strategy as well as the evolution of the image will benefit from quantitative 
computing developments using AI to provide accurate diagnosis and efficiency. 
 
The pharmacokinetic theory has been developed over decades based on the physiology and kinetics 
of reactions [4]. Explicit, mathematical models allow pharmacokinetic data to be reduced to parameter 
values, providing insight, and understanding of ADME processes (Absorption, distribution, metabolism, 
and excretion) and predicting the outcome of different dosing scenarios. However, explicit modeling 
is difficult due to the lack of precise knowledge of many hidden parameters such as inter-individual, 
inter-organ and inter-drug differences and the predicting the outcome remains hazardous. Machine 
learning (ML) tools are expected to provide solutions to these difficulties [5]. However, it becomes 
evident that even though data-driven ML techniques allow to overcome the difficulties of explicit 
mathematical modeling they bring other drawbacks, related to data readiness and availability. 
 

2. Objectives 
Using quantitative, experimental data obtained by MRI and optics bioimaging, in vitro and in vivo, the 
final objective is to model and optimize the efficiency of nanotheranostic administration of 
photoactivable formulations of antitumoral drugs, against cancer.  
 
MRI and optics images (3D+time data) will be recorded and analyzed to monitor the therapy and its 
efficiency. We will study the kinetic biodistribution of the drug in the tumor and in the whole body, to 
record pharmacodynamic activity and quantify the impact on the tumoral pathological areas in a 
dynamic manner. The objective of this PhD is to develop an IA model to optimize pharmacokinetic 
processes to obtain the desired drug release. 
 

3. Methods 
Data acquisition 
For studying pharmacokinetics of therapeutical formulation, sequences of MRI images will be recorded 
and processed. The sensitivity of detection of contrast agent will be optimized using quantitative 



acquisition methods (T1, T2, T2*, Susceptibility SWI weighting images [6]). These techniques are 
developed and implemented in preclinics and clinics to enhance the MRI contrast to improve the 
diagnosis of pathological biological areas. Moreover, the susceptibility is possibly different in different 
organs and tissues or due to the presence of MR contrast agents. We will extract spatial maps of the 
concentration and weight the signal with the local magnetic susceptibility by QSM Quantitative 
Susceptibility Methods [7]. 
In addition, processing integrative methods to provide the kinetic biodistribution information of the 
imaging probes will be developed. 
 
Data Analysis and Modeling 
New ML techniques appeared recently as a tradeoff between explicit modeling on one side, and purely 
data-driven methods at the other, allowing to use some knowledge together to fit a more reliable, and 
more physics-based model to available, observed data. The physics-informed machine learning [8] 
appeared as a new field of ML and steadily gains in popularity. It allows informing an ML model with 
underlying physics and requires less data to train. Other recent works illustrate how to use physics-
informed ML to solve inverse problems [9].  
For more complex phenomena, where no underpinning physics is known, yet another type of ML 
appeared that allows automated discovery of hidden, state variables from high-dimensional data [10]. 
Early works show how it allows to identify a stable, canonical physical model only from video 
recordings in time, without any knowledge of the governing physic laws. 
 
Sets of kinetic multiparametric data will be recorded and processed to optimizing the efficacy of the 
therapy : 

- Assessing the impact of the therapy using optical microscopy data of the subcellular 
internalization 

- Controlling the drug administration in the tumoral zone (using MRI and/or optical modalities) 
- MRI contrasts pre and post theranostic agents' injection in 3D images,  
- AI based prediction of the therapeutical outcome 

 

 
Figure : MRI- images of contrast agents and in vitro/in vivo micro images, IA imaging process 

 

4. Expected Results  
In the end we expect the AI based data analysis to better control the nanotheranostic drug 
administration and optimize the therapeutic outcome in various administration scenarii. We aim at 
providing a reliable tool for preclinical fundamental studies to make advances in the knowledge of 
these pathologies and evaluate new drugs and offer better diagnostic and follow-up to the patients. 
 
Funding and partnership: This PhD will be submitted for funding by the PSL University. As part of 
academic collaboration with Chimie ParisTech, the PhD candidate will have the opportunity to work 
with teams at Chimie ParisTech (responsible for the development of the nanotheranostic formulations 
and the imaging). 
 
PhD Advisor: Petr DOKLADAL, CMM / Mathématique et Systèmes / MINES Paris PSL 
 



Location: Centre for Mathematical Morphology, MINES Paris PSL  
https://www.cmm.minesparis.psl.eu/  
 
Application conditions: finished M2 programme with excellent academic records, expertise in image 
analysis, excellent AI coding skills (python, tensorflow/pytorch). 
 
Application procedure: a prospective candidate should send his curriculum, academic track, 
motivation letter, two reference letters to petr.dokladal@minesparis.psl.eu  
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