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Context

Strong, formable,  damage-tolerant  and recyclable materials  are crucially  needed to reduce CO2
emissions in the transport industry, particularly concerning vehicles with combustion engines but
also electric cars. Damage nucleation has gained particular interest in industry as recycling of alloys
often leads to higher impurity content and associated amount of brittle intermetallic particles in the
alloys.  In  forming  and  associated  ductile  fracture,  the  damage  nucleation  on  micrometre-sized
brittle particles remains poorly understood and hard to predict. Computerized predictions, as well as
simulation data,  obtained on realistic  virtual  microstructures,  are  needed in materials-by-design
frameworks that seek to control and enhance the mechanical response of microstructures. Damage
evolution is driven by the local stress state, which is itself a complex result of the load distribution
within  the  microstructure  of  the  material.  Experimental  (4D,  i.e.  space  and  time)  data,  image
analysis,  meshing  tools  and  full-field  computational  methods  (e.g.  finite  element)  have  been
developed in an effort to obtain a unified and reliable damage model at the macroscopic scale that
works under a wide variety of loading conditions. Nevertheless, the role of stress or strain as well as
of particle nature, size and shape remains unclear and hard to predict, yet crucial for formability and
fracture. The underlying physics responsible for damage nucleation and evolution is still nowadays
an open question. The complexity of such mechanisms suggest that the problems should be tacked
at lower scales, i.e. at micrometre scale, which put such study far away from industrial applications.
On the other  hand,  results  from literature  show that  the use of  macroscopic  phenomenological
models do not allow to obtain a generic and unified damage nucleation model, which lead to ad-hoc
ingredients that  allow to fit  some experimental observations.  The nucleation of damage and its
evolution is currently driven by phenomenological macroscopic laws that are far too simple and
cannot accurately reproduce the complexity observed in real systems.

Machine learning techniques could offer alternative strategies to such phenomenological damage
laws. Large experimental 4D datasets, of prime importance in this context, are available and can be
used in order to develop machine learning pipelines. To train these models and perform inverse
identification, experimental observations could be adequately supplemented by simulation data. Yet,
this  approach  suffers  from  two  main  drawbacks.  First,  state-of-the-art  micromechanical
computations are most often based on meshing of the structures whereas deep-learning pipelines are
often based on images. Second, the computational time involved in carrying out 4D simulations on
representative volume can be extreme. To address these problems, we propose to use specific
graph-based  machine-learning  methods  to  leverage  existing  experimental  and  computational
methods at the microscopic scale, at which the microstructure of the material can be resolved. In
particular, Graph Convolutional Networks (GCNs) are deep-learning pipelines that are useful to
deal with data generated on fairly-general discrete domains where interdependency between objects
is explicitly represented and have lately been adapted to treat mesh-based physical simulation or to
deal with crack coalescence and phenomena occurring at the crack tips. The methods yield much
more rigorous identification procedures by taking into account mesh-dependency explicitly in PDE
solvers, and therefore can be validated unambiguously.



Aluminium sample with a notch, in visible light microscopy image and high/ very high resolution
Laminography  (left)  and  development  of  several  voids  (black)  nucleated  at  secondary  phase
particles (white) during loading (right). The scale bar corresponds to 10 µm.

Internship objectives and supervision

This  internship  will  be  devoted  to  developing deep-learning  methods  that  predict  material  and
mechanical parameters based on simulated data obtained using finite element. Model problems and
microstructures of increasing complexities will be first considered. Graph-based machine-learning
methods, that allow for an exact match between the network and finite element meshes, will be
considered. Transfer learning approaches between graphs representing coarse and fine meshes will
be implemented and investigated as well as active learning methodologies, where finite element
simulations are performed on the fly to train the networks.

The internship work will be jointly supervised by Santiago Velasco-Forero, François Willot (Center
for  Mathematical  Morphology),  Daniel  Pino  Munoz  (Centre  de  mise  en  forme)  and  Thilo
Morgeneyer (Centre des matériaux)

A student with excellent background in either mechanics, numerical methods or machine-learning
techniques is sought for. A publication may be written and submitted to a journal, depending on the
internship results. The internship work may be pursued by a PhD thesis.

Contact: F. Willot (francois.willot@mines-paristech.fr)
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